1 Title:

A therapeutic antigen-presenting cell-targeting DNA vaccine VB10.16 in HPV16-positive highgrade cervical intraepithelial neoplasia: results from a phase 1/2a trial

4 Authors and Affiliations:

- Peter HILLEMANNS, 30625 Hannover, Hannover Medical School, Department of
 Gynecology and Obstetrics, Germany
- Agnieszka DENECKE, 30625 Hannover, Hannover Medical School, Department of
 Gynecology and Obstetrics, Germany
- 9 Linn WOELBER, 20246 Hamburg, University Medical Center Hamburg-Eppendorf,
 10 Department of Gynecologic Oncology, Germany
- Gerd BÖHMER, 30159 Hannover, IZD Institut für Zytologie und Dysplasie, Germany
- Matthias JENTSCHKE, 30625 Hannover, Hannover Medical School, Department of
 Gynecology and Obstetrics, Germany
- Karoline W SCHJETNE, 0349 Oslo, Nykode Therapeutics ASA, Norway
- Karsten MH BRUINS SLOT, 0349 Oslo, Nykode Therapeutics ASA, Norway
- Agnete B FREDRIKSEN, 0349 Oslo, Nykode Therapeutics ASA, Norway
- 17

18 **Running title:**

- 19 VB10.16 DNA vaccine in HPV16-positive cervical intraepithelial neoplasia
- 20

21 Key words:

- 22 VB10.16, Human Papilloma Virus 16, cervical intraepithelial neoplasia, first-in-human clinical
- 23 trial, therapeutic vaccine

24

25 Financial Support:

- 26 This study was funded by Nykode Therapeutics ASA (formerly Vaccibody AS) and co-funded
- by the Research Council of Norway (grant no. 219596 and 214866)
- 28
- 29
- 30
- 31
- ~~
- 32
- 33

34 Corresponding author:

- 35 Professor Peter HILLEMANNS
- 36 Hannover Medical School
- 37 Department of Gynecology and Obstetrics
- 38 Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- 39 Tel. +49 511 532 6144
- 40 Fax +49 511 532 6145
- 41 Email: Hillemanns.Peter@MH-Hannover.de
- 42

43 Disclosure of Potential Conflicts of Interest

- 44 P. Hillemanns has received honoria for lectures from Roche, AstraZeneca and MSD.
- 45 A.B. Fredriksen, K. W. Schjetne and K.M.H. Bruins Slot are all employees of Nykode
- 46 Therapeutics and hold ownership interest (including patents).
- 47 L. Woelber has received Honoria from Roche, TESARO/GSK, medac oncology, Pfizer,
- 48 AstraZeneca, TEVA, Omniamed, promedicis, MSD_Eisai, Seagene and research support from
- 49 medac oncology, Roche diagnostics, Greiner BioOne outside the submitted work.
- 50 No potential conflicts of interest were disclosed by the other authors.
- 51

52 Manuscript word count:

- 53 Translational relevance: 149 words
- 54 Abstract: 250 words
- 55 Main text: 4106 words
- 56
- 57 Number of Figures and Tables:
- 58 Main section: 2 tables and 3 figures
- 59 Supplement: 4 tables and 4 figures
- 60
- 61
- 62

63 ABSTRACT

- 64 **Purpose**: To evaluate the safety, immunogenicity and efficacy of a therapeutic DNA vaccine
- VB10.16, using a unique modular vaccine technology that is based on linking antigens to
- 66 CCL3L1 targeting module, in women with HPV16-positive high-grade cervical intraepithelial
- 67 neoplasia (CIN).
- 68 **Patients and Methods**: We conducted a first-in-human, open-label, phase I/IIa clinical trial of
- 69 VB10.16 in subjects with confirmed HPV16-positive CIN 2/3. The primary endpoint was the
- 70 proportion of participants with adverse events, including dose-limiting toxicities. Secondary
- outcome measures included measuring the E6/E7-specific cellular immune response. In the
- Expansion cohort HPV16 clearance, regression of CIN lesion size and grading were assessed
- 73 during a 12-month follow-up period.
- 74 **Results**: A total of 34 women were enrolled: 16 in two Dose cohorts and 18 in the Expansion
- cohort. No serious adverse events or dose-limiting toxicities were observed, and none of the
- subjects discontinued treatment with VB10.16 due to an adverse event. Mild to moderate
- injection site reactions were the most commonly reported adverse event (79%).
- 78 HPV16-specific T-cell responses were observed after vaccination in the majority of the subjects.
- 79 In the Expansion cohort, HPV16 clearance was seen in 8 of 17 evaluable subjects (47%).
- 80 Reductions in lesion size were seen in 16 subjects (94%) and 10 subjects (59%) had regression to
- 81 CIN 0/1. Correlation between strong IFN- γ T cell responses and lesion size reduction was
- 82 statistically significant (p < 0.001)
- 83 **Conclusions**: The novel therapeutic DNA vaccine VB10.16 was well tolerated and showed
- 84 promising evidence of efficacy and strong HPV16-specific T-cell responses in subjects with
- 85 high-grade CIN.

87 Translational Relevance

- 88 High-grade cervical intraepithelial neoplasia (CIN) caused by infection with human
- 89 papillomavirus (HPV) most often precedes the development of cervical carcinoma. HPV E6 and
- 90 E7 viral antigens are only expressed by HPV-infected cells and thus act as tumor-specific
- 91 antigens that are attractive targets for therapeutic cancer vaccines. VB10.16 is a novel vaccine
- 92 designed using a unique modular vaccine technology based on linking antigens to a CCL3L1
- 93 targeting module and developed to treat HPV16-associated premalignant and malignant lesions.
- We conducted a first-in-human trial of VB10.16 monotherapy in subjects with CIN 2 or 3 and
- 95 demonstrated that VB10.16 is well tolerated and generated robust HPV16-specific E6 and E7 T-
- 96 cell responses. We observed regression of lesion size and CIN grading in a majority of treated
- 97 subjects. Vaccine-induced T-cell responses were shown to be correlated to reduction of lesion
- size and grading indicating that VB10.16 was able to elicit a clinically relevant immune
- 99 response.
- 100
- 101
- 102

103 Introduction

- 104 Cervical carcinoma is often preceded by high-grade cervical intraepithelial neoplasia (CIN) and
- 105 remains one of the most common cancers in women worldwide, with GLOBOCAN statistics
- 106 from 2018 reporting over 560,000 new cases and over 300,000 deaths (1). This makes it the
- 107 fourth most common cancer in women worldwide (2). Almost all carcinomas of the cervix are
- 108 associated with HPV infections (2,3). Among more than 35 HPV types found in the genital tract,
- HPV16 accounts for 50-60% of cervical cancer cases, followed by HPV18 (10-20%) (4). These distributions are generally consistent worldwide (5–7). HPV16 is associated with a greater risk of
- distributions are generally consistent worldwide (5–7). HPV16 is associated with a greater risk of progression from infection to CIN (8,9). CIN grade 2 and grade 3 are considered high-grade
- squamous intraepithelial lesions and, if left untreated, around 30% of CIN 3 lesions will progress
- to carcinoma (10). Standard treatment for high-grade CIN is cervical excisional surgery
- 114 (conization) that is associated with some important long-term risks (e.g., pre-term delivery),
- 115 especially in younger women (11).
- 116 Current prophylactic HPV vaccines have been available for over 10 years, with vaccination in
- approximately 40% of the targeted population worldwide (12,13). However, prophylactic

118 vaccines are not able to treat pre-established infections or eradicate existing cancerous lesions

and CIN (14). HPV infections and HPV-related malignancies will continue to be a public health

120 issue in the coming decades. The development of effective non-surgical treatment options such

121 as therapeutic HPV vaccines and other anti-cancer therapies is therefore still relevant (15).

- 122 VB10.16 is an antigen-presenting cell (APC) targeting, DNA-based therapeutic vaccine that has
- been developed to treat HPV16-associated premalignant and malignant lesions. VB10.16
- 124 includes the E6 and E7 tumor-specific antigens that are expressed by HPV16-infected cells. The
- vaccine encodes a recombinant protein consisting of mutation-inactivated E6 and E7 proteins,
- 126 linked to the natural human chemokine (C-C motif) ligand 3-like 1 (CCL3L1 or LD78β) in a
- 127 dimeric format. The chemokine CCL3L1 attracts APC and when binding to its receptor CCR5
- 128 expressed on APC delivers the E6 and E7 antigens directly to the APCs, thereby increasing
- 129 antigen loading and cross presentation through direct delivery of the antigen by receptor ligation
- 130 and internalization. (16,17). The mature APCs can migrate to the lymph nodes where they
- 131 activate antigen-specific T cells. These activated T cells are then able to kill cancer cells that
- express the relevant antigen (18,19). This unique mechanism of action, targeting the antigens to
- 133 chemokine-receptors on APCs, induces a powerful cellular immune response against the antigens
- 134 compared to conventional therapeutic vaccines, which only deliver the antigens (16,17). The
- 135 VB10.16 vaccine holds antigens from HPV16 and will thus induce an immune response
- 136 specifically to the virus strain infecting the transduced cells.
- 137 We conducted a first-in-human, open-label, multicenter, phase I/IIa trial to assess the safety and
- immunogenicity of two different dosing schedules of 3 mg VB10.16 in women with HPV16-
- 139 positive CIN 2 and examined the safety, immunogenicity and preliminary efficacy of VB10.16 in
- 140 an Expansion cohort including subjects with HPV16-positive CIN 2 or CIN 3.

141 Subjects and Methods

142 Study Design and Subjects

- 143 This single-arm, open-label study was conducted at 4 study sites in Germany between September
- 144 2015 and January 2019. An initial dosing phase was performed in two cohorts of 8 participants
- 145 each, to evaluate safety and immunogenicity of 3 mg VB10.16 using different dosing schedules.
- 146 Results from this phase were subject to an interim analysis after 6 participants in each dose
- 147 cohort had completed immunological assessments 16 weeks after receiving the first dose of
- 148 VB10.16. Results were reviewed by a Cohort Review Committee that advised on the selection of
- 149 the VB10.16 regimen to be further evaluated in a subsequent Expansion cohort of 18 subjects
- 150 based on safety and immunological results (Supplementary Figure S1).
- 151 Eligible women were aged at least 18 years, had pathology-confirmed HPV16-positive high-
- 152 grade cervical intraepithelial neoplasia (CIN 2 for the initial Dosing cohorts, or CIN 2 or 3 for
- 153 the Expansion cohort), and agreed to the protocol-mandated biological sampling. All participants
- 154 were required to have adequate bone marrow and liver function. Participants were considered
- 155 ineligible if colposcopy showed more than 2 cervical quadrants of CIN 3, or evidence of severe
- 156 pelvic inflammatory disease or cervicitis, or other severe gynecological infection. Participants
- 157 with atypical glandular cells, adenocarcinoma in situ, malignant cells, or suspected micro-
- 158 invasive or invasive disease were excluded. Participants were also excluded if they had clinically
- 159 significant autoimmune disease or known immunodeficiency, previous vaccination against HPV,
- 160 or administration of any live vaccination within the preceding 90 days. An extensive list of
- 161 inclusion and exclusion criteria is listed in the Supplement section (Supplementary Table S1).
- 162 The protocol allowed for conization of subjects during the study period and the decision to
- 163 perform a conization was at the discretion of the investigator.
- 164 The study was conducted in accordance with the principles of the Declaration of Helsinki, and of
- 165 Good Clinical Practice, and was approved by the Paul Ehrlich Institute and Ethics Committees of
- 166 participating sites in Germany before screening subjects. Eligible subjects were identified by
- 167 participating investigators and all subjects provided written informed consent before undergoing
- any study procedures. The trial is registered at ClinicalTrials.gov (NCT02529930).

169 Plasmid design

- 170 VB10.16 is a non-replicative, non-integrating, DNA plasmid of 5994 base pairs. It encodes a
- 171 single recombinant homodimer protein consisting of three modules: mutation-inactivated E6 and
- 172 E7 protein from HPV16 linked to the natural human chemokine CCL3L1 via a Dimerization
- 173 Module derived from human Immunoglobulin G (IgG3) as shown in **Figure 1**. The described
- 174 coding region was inserted in high-expression vector, pUMVC4a, to generate VB10.16 which
- 175 was produced in *E. coli* DH1 in compliance with cGMP at Cobra Biologics Ltd., Keele, UK.

176 Study procedures

- 177 VB10.16 was administered as two 0.5 mL intramuscular injections into the lateral deltoid
- 178 muscles using the PharmaJet[®] Stratis 0.5 mL Needle-free Injection System (Golden, Colorado,
- 179 USA). Participants in the initial dosing phase received 3 vaccinations of 3 mg VB10.16 and two

- 180 dosing regimens were evaluated: in Cohort 1 participants received vaccinations at Weeks 0, 3
- and 6; in Cohort 2 vaccinations were administered at Weeks 0, 4 and 12. Participants in the
- 182 Expansion cohort received 4 vaccinations of 3 mg VB10.16 (Weeks 0, 3, 6 and 16)

183 (Supplementary Figure S1).

- 184 HPV16 positivity of all subjects was verified by a Cobas[®] HPV Test performed at the study site 185 and obtained within four weeks prior to start of study treatment.
- 186 Safety was evaluated by recording adverse events (AEs, Common Terminology Criteria for
- 187 Adverse Events, version 4.0) and through regular scheduled evaluations of safety laboratory
- 188 parameters, vital signs, physical examinations, and electrocardiograms (ECGs). Injection site
- 189 related adverse events were solicited through the use of a diary in each subject.
- 190 A DLT was defined as a clinically significant toxicity or abnormal value assessed as unrelated to
- 191 the underlying disease, or concomitant medication and considered related to the study treatment.
- 192 Regression of CIN lesions and lesion size was evaluated at the study sites by colposcopic
- 193 examination and by histological assessment of representative cervical biopsies (at Screening and
- after 2 months, 4 months, 6 months 9 month and 12 months of the first administration of
- 195 VB10.16). More than one lesion could be followed by the investigator for this purpose.
- 196 Clearance of HPV was evaluated at the study sites using a Cobas[®] HPV Test (Roche Molecular
- 197 Diagnostics, Pleasanton, California) and/or p16 immunohistochemistry assessment of cervical
- biopsies (at Screening and 2 months, 4 months, 6 months 9 month and 12 months of the first
- administration of VB10.16).
- 200 Biopsies of cervical lesions were obtained at screening, after 4 months, and after 6 months to
- 201 analyze PD-L1 expression (clone 22C3) by immunohistochemistry.

202 IFNγ ELISpot assay

- 203 Blood samples were obtained at pre-specified time points to monitor cellular immune responses
- 204 (Supplement Figure 2). Immunogenicity of the vaccine was evaluated in terms of the cellular
- 205 immune response against the E6/E7 viral antigens, using enzyme-linked immunospot assay
- 206 (ELISpot) to assess systemic T-cell responses. Cryopreserved and thawed peripheral blood
- 207 mononuclear cells (PBMCs) were cultured in RPMI-1640 overnight at 37 °C, 5% CO₂. After
- resting, PBMCs were cultured with HPV16 E6 or E7 peptides pools peptide pools in RPMI
- supplemented with 10% FCS for 5 days at 37 °C 5% CO_2 (2 × 10⁶ cells/wells in 24 well plate).
- At day 5, each condition was harvested and seeded in ELISpot plates at 2×10^5 cells/well.
- 211 PBMCs were then re-stimulated with HPV16 E6 or E7 peptide pools or anti-CD3 (positive
- control). Unstimulated PBMCs served as negative controls. After 24 hours incubation, spots
- 213 were developed according to manufacturer's instructions and counted using CTL reader. HPV-
- 214 specific responses were calculated by subtracting the mean number of spots in the unstimulated
- cells from the mean number of spots in experimental wells and shown as spot-forming units
- 216 (SFU) per 10^6 PBMCs. The assay was performed in quadruplicates.
- 217

218 **Outcome Measures**

- 219 The primary endpoint, the proportion of subjects with AEs, including any DLTs, laboratory
- 220 assessments, and physical findings, was analyzed in the Safety Evaluable Population, comprising 221 all subjects who received any amount of VB10.16.
- 222 Immunogenicity endpoints were analyzed in the Immunogenicity Evaluable Population, 223
- comprising all subjects who underwent an immunologic assessment during the study.
- 224 Efficacy endpoints (CIN lesion size, CIN regression and HPV-clearance) were analyzed in the
- Efficacy Evaluable Population in the Expansion cohort comprising all subjects with at least 1 225
- post-baseline colposcopic assessment and Cobas[®] HPV Test. These outcomes were all assessed 226
- 227 locally by the investigators at prespecified timepoints.

228 **Statistical Analysis**

- 229 The sample size for this exploratory, first-in-human trial was based on clinical and practical
- 230 considerations, not on a formal statistical power calculation. An interim analysis was planned
- 231 after completion of the initial dosing phase. Statistical analyses were generally descriptive, using
- 232 counts and percentages for categorical measures, and mean, median, standard deviation,
- 233 minimum, maximum for continuous measures. A Mann-Whitney test was used to analyze
- 234 differences in immune responses in subjects with and without reductions in lesion size. A
- 235 generalized linear model with a Gamma distributed dependent variable and inverse link function
- 236 was fitted to the data. An ANOVA analysis on the resulting single term model resulted in a p-
- 237 value for SFU. Detailed description of the generalized linear model is available in the
- 238 Supplementary information. P values less than 0.05 were considered significant. All statistical
- analyses were performed using SAS[®] (version 9.4; SAS Institute, Cary, NC, USA). 239
- 240

241 **Data availability**

- 242 The data generated in this study are available within the article and its supplementary data files
- 243 and at Clinicaltrials.gov (NCT02529930). Please contact the corresponding author for requests
- for additional data. 244

245 Results

246 Subjects disposition and baseline characteristics

- A total of 38 women were screened for the study; 4 women failed to meet all the eligibility
- criteria and 34 women were enrolled in the study and received treatment with VB10.16
- 249 (Supplementary Figure S3). Demographics and baseline characteristics were comparable
- 250 between cohorts (Table 1). A table outlining the representativeness of study participants is
- 251 included in the Supplement section (Supplementary Table S2).
- 252 One subject enrolled in the Expansion cohort was subsequently found to be HPV16 negative
- after having received 2 vaccinations, and treatment was thereafter discontinued. This subject was
- followed for safety until Week 24 and was included in the safety analyses but was excluded from
- immunogenicity and efficacy analyses, since VB10.16 can only be effective in subjects with
- HPV16. The remaining 33 enrolled subjects received all scheduled vaccinations. Conization was
- 257 permitted under the protocol and 6 enrolled subjects underwent this procedure after having
- 258 received all scheduled vaccinations with VB10.16. One subject in the Expansion cohort
- 259 discontinued before the scheduled 6 months follow-up visit.

260 Safety

- 261 No serious adverse events and DLTs were reported in the safety evaluable population (n=34),
- and none of the subjects discontinued treatment due to an adverse event. Adverse events were
- reported in all subjects except one and were typically mild to moderate in severity. The most
- 264 common solicited and unsolicited treatment-related AEs ($\geq 10\%$) reported during the period from
- administration of the first VB10.16 dose to 30 days post last dose are listed in **Table 2**. Most
- treatment-related AEs were "General disorders and administration site conditions", mainly
- 267 injection site reactions. The majority of such injection site reactions (81%) resolved within 4
- 268 days and were mild in nature, with 99% of events of Grade 1 or 2 severity. Other commonly
- reported treatment-related AEs ($\geq 10\%$) were headache, hyperesthesia and erythema, all of Grade
- 1-2. Grade 3 AEs were reported in 3 subjects (9%): 1 participant with emotional distress and 1
- 271 participant with arthritis that were both not considered related to treatment with VB10.16 by the
- treating physicians, and 1 participant with injection site pain and hyperesthesia that were both
- 273 considered to be treatment related. No Grade 4 or 5 AEs were reported.
- 274 Treatment-related late emerging AEs (occurring during Week 24 to 12 months) were reported in
- 1 participant in Cohort 2 (alopecia) and 2 subjects in the Expansion cohort (influenza-like illness
- and injection site pruritus).
- A comparison of results between Cohort 1, Cohort 2 and Expansion cohort showed similar
- 278 overall treatment-related AEs by System Organ Class with few category exemptions and few
- 279 differences (Supplementary Tables S3 A-C).
- 280 No noticeable changes in vital signs, ECG, or performance status were observed during the study
- 281 period. A few patients experienced Grade 2, 3 and 4 lab value events, but none of these were
- considered as related to VB10.16 (Supplementary Table S4).

283 Clinical efficacy and HPV clearance in Expansion cohort

- 284 Preliminary evidence of efficacy was assessed in 17 evaluable subjects with CIN 2/3 that were
- enrolled in the Expansion cohort and received vaccinations with VB10.16 at week 0, 3, 6 and 16.
- 286 Three subjects were not followed up for the complete 12 months period: two subjects had a
- 287 conization performed after 5 and 10 months, respectively, and one subject withdrew from study
- after 9 months.
- A reduction in lesion size was observed in 16 of the 17 evaluable subjects (94%), who were
- followed for up to 12 months. Twelve subjects (71%) had lesions size reductions of more than
- 291 50% compared with their baseline lesion size. Regression of lesions to CIN 0 or CIN 1 was
- observed in 10 subjects (59%). A complete regression of CIN (CIN 0) was seen in 8 subjects
- 293 (47%). (Figure 2).
- HPV16 clearance was observed in 8 evaluable subjects (47%) as assessed by at least one test
- 295 (Cobas[®] HPV Test or p16 immunohistochemistry assessment of cervical biopsies) during the 12
- 296 months follow-up period.

297 Clinical efficacy and HPV clearance in initial Dosing cohorts

- 298 Preliminary evidence of efficacy was also assessed in 16 evaluable subjects with CIN 2 at
- baseline that were enrolled in the two initial Dosing cohorts and received vaccinations with
- 300 VB10.16 at week 0, 3, 6 in Cohort 1, and at week 0, 4 and 12 in Cohort 2. Four subjects (two in
- each cohort) were not followed up for the complete 12 months period: these subjects had a
- 302 conization performed after 4, 6, 6 and 7 months, respectively
- 303 A reduction in lesion size was observed in 6 of the 8 evaluable subjects (75%) in Cohort 1 and in
- 4 of the 8 evaluable subjects (50%) in Cohort 2. Regression of lesions to CIN 0 or CIN 1 was
- 305 observed in 3 subjects (38%) in Cohort 1 and 3 subjects (38%) in Cohort 2. A complete
- regression of CIN (CIN 0) was seen in 2 subjects (25%) in Cohort 1 and 2 subjects (25%) in
- 307 Cohort 2.
- 308 HPV16 clearance was observed in 3 evaluable subjects (38%%) in Cohort 1 and 3 subjects
- 309 (38%) in Cohort 2, as assessed by at least one test (Cobas[®] HPV Test or p16
- 310 immunohistochemistry assessment of cervical biopsies) during the 12 months follow-up period.
- 311

312 Induction of HPV16-specific IFN-γ responses

- 313 Systemic T cell responses against HPV16 E6 and E7 viral antigens were assayed by IFN-γ
- 314 ELISpot individually in isolated PBMCs. PBMCs were collected at baseline and post vaccination
- 315 visits, and functional T cell responses are reported for 31 of 33 evaluable subjects.
- 316
- 317 HPV16-specific T cell responses were increased from baseline at least at one timepoint after
- 318 vaccination in 6 of the 7 (85%) evaluable subjects in Cohort 1 (Figure 3A), with the peak
- 319 response observed at Week 7 one week after the third vaccination. Increased IFN-γ T cell
- response post baseline was observed in all 7 (100%) evaluable subjects in Cohort 2 (**Figure 3B**).

- 322 well tolerated, and the T cell response was increased after multiple vaccinations.
- 323

324 IFN-γ ELISpot in Cohort 1 (Week 0, 3, and 6) showed faster, stronger, and longer lasting T-cell

responses compared with Cohort 2 (Week 0, 4 and 12), and based on both immunogenicity and

- 326 safety findings, this dosing regimen was selected for the Expansion cohort. In addition to the 327 induction vaccinations, an additional vaccination at Week 16 was included in the Expansion
- 328 cohort to study whether T-cell immune responses could be further amplified and maintained by
- 329 multiple vaccinations.
- 330

331 In the Expansion phase, strong T-cell responses were observed for all subjects (N=17) with an

- average 7.9-fold increase (range 0-63-fold) indicating that an increase in the number of
- vaccinations elicited a more robust and longer lasting T cell responses. T-cell responses were
- increased from baseline in 16 of 17 subjects (94%) after vaccination, and in 13 subjects (76.5%)
- more than 2-fold (**Figure 3C**). The additional dose at Week 16 demonstrated amplified and prolonged immune responses compared to the desing schert 1/(Figure 3D)
- prolonged immune responses compared to the dosing cohort 1(Figure 3D).
- 337

The majority of the subjects (29 of 31 evaluable subjects) demonstrated a vaccine-induced T cell response, and a response was seen against both E6 and E7 antigens (**Supplementary Figure S4**).

- 340
- 341 HPV16-specific immune responses correlated with lesion size regression
- 342

A total of 26 (79%) of the 33 subjects enrolled into Cohort 1, 2 and Expansion Cohort showed a

344 lesion size reduction, and an exploratory analysis demonstrated a clear statistically significant

345 correlation (p < 0.001) between strength of T cell response and reduction in lesion size. Most

- 346 patients with strong T cell responses and lesion size reduction also presented with regression to
- no CIN or CIN 1, indicating that VB10.16 induced a clinically relevant immune response
- 348 (Figures 3E and F).

349 **PD-L1 upregulation in CIN lesions**

350 Expression of PD-L1 in cervical biopsies was assessed by immunohistochemistry at baseline and

- at week 16 and week 24 in subjects enrolled in the Expansion cohort. The data shown in **Figure**
- 4, indicate a trend towards an increased level of PD-L1 after VB10.16 vaccination which may
- delay or inhibit T-cell mediated elimination of affected cells. Strong IFNγ responses were
- 354 observed and lead to the expectation that PD-L1 was upregulated in the tumoral epithelium as a
- response to the strong immune response elicited by the VB10.16 vaccine. An upregulation of
- 356 PD-L1 (>1%) was observed in all 6 patients, who did not achieve a regression to no CIN or CIN
- 357 1 during the follow-up period.
- 358
- 359

360 **DISCUSSION**

- 361 In this first-in-human study the APC targeted, therapeutic DNA vaccine VB10.16 was generally
- 362 safe and well tolerated in women with HPV16-positive high-grade CIN. The most common
- 363 treatment-related adverse events were injection site reactions that were predominantly mild to
- 364 moderate in severity and of limited duration. Furthermore, immunogenicity of VB10.16 was
- demonstrated, with a robust and prolonged HPV16-specific T-cell response after vaccination in
- 366 the majority of the subjects. The two Initial dosing cohorts demonstrated that the HPV16-specific 367 T cell response is increased by more frequent vaccinations, and the 3-week vaccination regimen
- in combination with an additional vaccination demonstrated induction of the most rapid, strong,
- 369 and long-lasting T cell responses.
- 370 Clearance of HPV16 and evidence of partial and complete regression of CIN lesions was
- 371 observed in a majority of subjects in the Expansion cohort, indicating promising signs of efficacy
- of VB10.16. A regression of lesions to no CIN or CIN 1 was observed in 10 (59%) subjects. This
- 373 seems to be in line, or better, when compared with findings from other studies investigating
- therapeutic vaccines targeting E6 and E7 that reported regression rates to no CIN or CIN 1 in
- 375 women with high-grade CIN (20–22). The observed HPV clearance rate of 47% in subjects
- treated with VB10.16 is also supportive for the HPV-specific mechanism of action of VB10.16.
- 377 Caution should, however, be exercised when performing cross-trial comparisons as the included
- 378 study populations, number of treated subjects and study follow-up periods vary between studies.
- 379 Interestingly, the induction of strong HPV16-specific T-cell responses was correlated with lesion
- 380 size reduction in most treated subjects, indicating that T-cells induced by the VB10.16 vaccine
- 381 were clinically active. A robust IFN-γ T-cell response was observed in all subjects who received
- 382four VB10.16 injections. A strong T-cell response was generated against both E6 and E7
- 383 antigens in all subjects and a significant correlation to lesion size reductions was evident for both
- E6 and E7-specific T-cells. The unique modular vaccine technology of VB10.16 that is based on
- 385 linking antigens to the chemokine CCL3L1 targeting module might contribute to cross
- 386 presentation enabling a strong T-cell response. In trials performed in similar settings as ours
- investigating vaccines that are not directly targeting antigen presentation to APCs for uptake of
 HPV antigens, T-cell responses were only elicited in a limited number of subjects (21.23.24).
- HPV antigens, T-cell responses were only elicited in a limited number of subjects (21,23,24).
 Furthermore, in contrast to other therapeutic HPV vaccines holding both HPV16 and HPV18
- 390 antigens, the immune response elicited by VB10.16, and demonstrated in IFNy ELISpot, is
- 391 specific against the HPV strain in the infected lesion. Homologous vaccination of the VB10.16
- 392 vaccine with initial priming doses to activate the immune system, followed by an additional dose
- 393 of the same vaccine also offers a simple and easy vaccination regime compared to heterologous
- 394 prime-boost vaccines that use different types of vaccine technologies.
- 395 The promising, though preliminary, signs of efficacy and the upregulation of PD-L1 observed in
- this study provide a strong rationale for combining VB10.16 with an anti-PD-1/PD-L1
- 397 checkpoint inhibitor. Combination therapy with a checkpoint inhibitor blocking PD-1/PD-L1
- 398 interaction between the activated T-cells and tumor cells might have resulted in improved
- 399 clinical responses in our study. Such a combinatorial approach is supported by a recent study of
- 400 nivolumab in combination with ISA101b, a synthetic long-peptide therapeutic HPV16 vaccine,

- 401 in patients with HPV16-positive head and neck cancer. This study showed promising results in
- 402 terms of overall response rate and overall survival compared to historical data in patients
- 403 receiving PD-1 inhibition alone (25). Another study that combined treatment with a therapeutic
- 404 DNA vaccine targeting E6 and E7 (GX-188E) and pembrolizumab in patients with HPV16/18-
- 405 positive advanced cervical cancer also showed improved response rates compared with historical
- 406 data from patients who received treatment with pembrolizumab alone (26). A phase 2 study of
- 407 VB10.16 in combination with the PD-L1 inhibitor atezolizumab is currently ongoing in women
- 408 with HPV16-positive advanced cervical cancer (NCT04405349). This trial uses a schedule of
- 409 VB10.16 with a similar 3-week dose interval in an induction phase.
- 410 The use of a 2-phase approach is typical in early phase studies with an exploratory focus and was
- 411 of particular benefit in the present study, where a clear difference in immune responses between
- the initially studied dose regimens was observed, and results from the interim analysis prompting
- 413 the addition of a fourth vaccination.
- 414 Most subjects were followed up for an extended period (up to 12 months) after having received 3
- 415 or 4 VB10.16 vaccinations allowing for an adequate characterization of its safety profile. Our
- 416 study was, however, both limited in size and had extensive exclusion criteria, which were
- 417 necessary to protect the safety of participating individuals given that this was a first-in-human
- 418 study with VB10.16. This resulted in the population under examination being more homogenous
- 419 compared to a real-world situation. Further, we excluded women who had received prior
- 420 prophylactic HPV vaccination from our study.
- 421 Importantly, the Expansion cohort included both subjects with CIN 2 lesions and more severe
- 422 CIN 3 lesions. As our trial was phase 1 and did not have a placebo or control arm, the observed
- 423 regressions of lesion size that were seen in most subjects will have to be interpreted with some
- 424 caution. Biopsies that were taken from CIN lesions during the study period might have resulted
- 425 in decreased lesion sizes. CIN lesions are also known to have relatively high spontaneous
- regression rates, although such rates are generally lower (<30%) in subjects with CIN 2 or CIN 3
 lesions that were enrolled in our study (21,27,28). Spontaneous regression of CIN 3 lesions
- 427 resions that were enrolled in our study (21,27,28). Spontaneous regression of CIN 3 resions
 428 caused by HPV16 that were included in the expansion cohort are reported to be even more rare
- 428 (27). In conclusion, vaccination of women with HPV16-positive high-grade CIN using the
- 430 unique modular vaccine technology of VB10.16 that is based on linking antigens to a CCL3L1
- 431 targeting module, was generally well tolerated, and induced rapid, strong and long-lasting
- 432 immune responses specific for E6 and E7 antigens. Promising signs of efficacy were observed in
- 433 subjects who received VB10.16 using a homologous vaccination regimen. A strong T cell
- 434 response was demonstrated in subjects with lesion size reduction indicating that VB10.16
- 435 induced a clinically relevant immune response.
- 436
- 437
- 438
- 439

440 Acknowledgements

- 441 The authors thank the subjects and their families for participating in the clinical trial. We would
- 442 also like to thank the staff at the study sites for their contribution to the clinical trial and
- 443 members of VB10.16 vaccine program at Nykode Therapeutics ASA for supporting the clinical
- trial and manufacturing VB10.16. This study was funded by Nykode Therapeutics ASA
- 445 (formerly Vaccibody AS) and co-funded by the Research Council of Norway (grant no. 219596
- 446 and 214866).
- 447
- 448
- 449

450 **References**

- 451 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics
- 452 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185
 453 countries. Ca Cancer J Clin. 2018;68:394–424.
- 454 2. Arbyn M, Weiderpass E, Bruni L, Sanjosé S de, Saraiya M, Ferlay J, et al. Estimates of
- incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Global Heal.
 2020;8:e191–203.
- 457 3. Plummer M, Martel C de, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of cancers 458 attributable to infections in 2012: a synthetic analysis. Lancet Global Heal. 2016;4:e609–16.
- 459 4. Crow JM. HPV: The global burden. Nature. 2012;488:S2–3.
- 460 5. Bosch FX, Manos MM, Munoz N, Sherman M, Jansen AM, Peto J, et al. Prevalence of
- 461 Human Papillomavirus in Cervical Cancer: a Worldwide Perspective. Jnci J National Cancer
- 462 Inst. 1995;87:796–802.
- 6. Clifford GM, Smith JS, Plummer M, Muñoz N, Franceschi S. Human papillomavirus types in
 invasive cervical cancer worldwide: a meta-analysis. Brit J Cancer. 2003;88:63–73.
- 7. Ronco G, Ghisetti V, Segnan N, Snijders PJF, Gillio-Tos A, Meijer CJLM, et al. Prevalence of
 human papillomavirus infection in women in Turin, Italy. Eur J Cancer. 2005;41:297–305.
- 467 8. Jaisamrarn U, Castellsagué X, Garland SM, Naud P, Palmroth J, Rosario-Raymundo MRD, et
 468 al. Natural History of Progression of HPV Infection to Cervical Lesion or Clearance: Analysis of
- the Control Arm of the Large, Randomised PATRICIA Study. Plos One. 2013;8:e79260.
- 470 9. Stoler MH, Wright TC, Sharma A, Apple R, Gutekunst K, Wright TL, et al. High-risk human
- 471 papillomavirus testing in women with ASC-US cytology: results from the ATHENA HPV study.
 472 Am J Clin Pathol. 2011;135:468–75.
- 473 10. McCredie MR, Sharples KJ, Paul C, Baranyai J, Medley G, Jones RW, et al. Natural history
- 474 of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia
 475 2. a retraepositive schort study. Lenget Openl. 2008;0:425, 24
- 475 3: a retrospective cohort study. Lancet Oncol. 2008;9:425–34.
- 476 11. Kyrgiou M, Athanasiou A, Kalliala IEJ, Paraskevaidi M, Mitra A, Martin-Hirsch PP, et al.
- 477 Obstetric outcomes after conservative treatment for cervical intraepithelial lesions and early
- 478 invasive disease. Cochrane Db Syst Rev. 2017;11:CD012847.
- 479 12. Cheng L, Wang Y, Du J. Human Papillomavirus Vaccines: An Updated Review. Nato Adv
 480 Sci Inst Se. 2020;8:391.

- 481 13. Bruni L, Diaz M, Barrionuevo-Rosas L, Herrero R, Bray F, Bosch FX, et al. Global estimates
- 482 of human papillomavirus vaccination coverage by region and income level: a pooled analysis.
 483 Lancet Global Heal. 2016;4:e453–63.
- 484 14. Chabeda A, Yanez RJR, Lamprecht R, Meyers AE, Rybicki EP, Hitzeroth II. Therapeutic
 485 vaccines for high-risk HPV-associated diseases. Papillomavirus Res. 2017;5:46–58.
- 486 15. Rumfield CS, Roller N, Pellom ST, Schlom J, Jochems C. Therapeutic Vaccines for HPV 487 Associated Malignancies. Immunotargets Ther. 2020;9:167–200.
- 488 16. Fredriksen AB, Sandlie I, Bogen B. DNA Vaccines Increase Immunogenicity of Idiotypic
 489 Tumor Antigen by Targeting Novel Fusion Proteins to Antigen-Presenting Cells. Mol Ther.
 490 2006;13:776–85.
- 491 17. Fredriksen AB, Bogen B. Chemokine-idiotype fusion DNA vaccines are potentiated by
 492 bivalency and xenogeneic sequences. Blood. 2007;110:1797–805.
- 493 18. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature.
 494 1998;392:245–52.
- 495 19. Mellman I, Steinman RM. Dendritic Cells Specialized and Regulated Antigen Processing
 496 Machines. Cell. 2001;106:255–8.
- 497 20. Choi YJ, Hur SY, Kim T-J, Hong SR, Lee JK, Cho C-H, et al. A Phase II, Prospective,
- 498 Randomized, Multicenter, Open-Label Study of GX-188E, an HPV DNA Vaccine, in Patients
 499 with Cervical Intraepithelial Neoplasia 3. Clin Cancer Res. 2020;26:1616–23.
- 500 21. Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, et al. Safety, efficacy,
- and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human
- 502 papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a
- randomised, double-blind, placebo-controlled phase 2b trial. Lancet. 2015;386:2078–88.
- 504 22. Harper DM, Nieminen P, Donders G, Einstein MH, Garcia F, Huh WK, et al. The efficacy
- 505 and safety of Tipapkinogen Sovacivec therapeutic HPV vaccine in cervical intraepithelial
- 506 neoplasia grades 2 and 3: Randomized controlled phase II trial with 2.5 years of follow-up.
- 507 Gynecol Oncol. 2019;153:521–9.
- 508 23. Kim TJ, Jin H-T, Hur S-Y, Yang HG, Seo YB, Hong SR, et al. Clearance of persistent HPV
 509 infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat Commun.
- 509 infection and ce 510 2014;5:5317.
- 511 24. Steenwijk PJ de V van, Ramwadhdoebe TH, Löwik MJG, Minne CE van der, Meer DMAB
- 512 der, Fathers LM, et al. A placebo-controlled randomized HPV16 synthetic long-peptide
- 513 vaccination study in women with high-grade cervical squamous intraepithelial lesions. Cancer
- 514 Immunol Immunother. 2012;61:1485–92.

- 515 25. Massarelli E, William W, Johnson F, Kies M, Ferrarotto R, Guo M, et al. Combining
- 516 Immune Checkpoint Blockade and Tumor-Specific Vaccine for Patients With Incurable Human
- 517 Papillomavirus 16–Related Cancer: A Phase 2 Clinical Trial. Jama Oncol. 2019;5:67.
- 518 26. Youn JW, Hur S-Y, Woo JW, Kim Y-M, Lim MC, Park SY, et al. Pembrolizumab plus GX-
- 519 188E therapeutic DNA vaccine in patients with HPV-16-positive or HPV-18-positive advanced
- 520 cervical cancer: interim results of a single-arm, phase 2 trial. Lancet Oncol. 2020;21:1653–60.
- 521 27. Motamedi M, Böhmer G, Neumann HH, Wasielewski R von. CIN III lesions and regression:
 522 retrospective analysis of 635 cases. Bmc Infect Dis. 2015;15:541.
- 523 28. Zhang J, Lu C. Spontaneous Regression of Cervical Intraepithelial Neoplasia 2: A Meta 524 analysis. Gynecol Obstet Inves. 2019;84:562–7.
- 525
- 526
- 527

528

529

Tables and Figures

533 Table 1: Baseline characteristics

Baseline characteristics	VB10.16 Dose Cohort (3 mg/mL)			
	Cohort 1	Cohort 2	Expansion	Overall
Number of Subjects	8	8	18	34
Age (years)				
Ν	8	8	18	34
Mean	31.4	27.4	29.1	29.2
18 to 64	8 (100.0%)	8 (100.0%)	18 (100.0%)	34 (100.0%)
Cervical Dysplasia Categorization				
CIN 2	8 (100.0%)	8 (100.0%)	8 (44.4%)	24 (70.6%)
CIN 3	0	0	10 (55.6%)	10 (29.4%)
HPV16 Present	8 (100.0%)	8 (100.0%)	17 (94.4%)	33 (97.1%)
Other High-risk HPV Present	3 (37.5%)	5 (62.5%)	7 (38.9%)	15 (44.1%)
ECOG Performance Status				
0	8 (100.0%)	8 (100.0%)	18 (100.0%)	34 (100.0%)

535 CIN, cervical intraepithelial neoplasia; ECOG, Eastern Co-operative Oncology Group; HPV, Human Papilloma

536 Virus. All enrolled subjects were Caucasian.

- 538 Table 2: Common solicited and unsolicited treatment-related AEs (≥10%) reported during
- 539 the period from administration of the first VB10.16 dose to 30 days post last dose in all 540 cohorts combined

MedDRA System Organ Class		
MedDRA preferred term	Overall (%)	
Number of Subjects	34	
General disorders and	32 (94%)	
administration site conditions		
Injection site pain	27 (79%)	
Injection site erythema	17 (50%)	
Injection site hypersensitivity	14 (41%)	
Injection site hyperaesthesia	13 (38%)	
Injection site swelling	11 (32%)	
Swelling	6 (18%)	
Fatigue	5 (15%)	
Pain	5 (15%)	
Nervous system disorders	22 (65%)	
Headache	13 (38%)	
Hyperaesthesia	13 (38%)	
Skin and subcutaneous tissue	14 (41%)	
disorders	-	
Erythema	11 (32%)	

AE, adverse event; MedDRA, Medical Dictionary for Regulatory Activities

542 Figure 1: Diagram of the therapeutic DNA vaccine VB10.16 designed by the unique

- 543 modular vaccine technology linking antigens to a CCL3L1 targeting module. (A) The
- 544 VB10.16 DNA vaccine was constructed through insertion of a coding sequence (CDS) encoding
- inactivated E7 and E6 HPV16 proteins linked to the chemokine CCL3L1 including its native
 signal peptide, through a human immunoglobulin G (IgG3) based dimerization unit consisting of
- 547 hinge region 1 of human IgG3, hinge region 4 of human IgG3 and CH3 domain of human IgG3
- 548 into pUMVC4a expression vector. (B) The translated Vaccibody protein consists of inactivated
- 549 E6 and E7 HPV16 proteins linked to the human chemokine CCL3L1 through a human
- 550 immunoglobulin G (IgG3) based homodimerization unit.
- 551

Figure 2: Best overall change from baseline in CIN lesions. Each bar in the waterfall plot represents one subject indicating maximum change in lesion size and CIN staging during the 12 months follow-up period in all evaluable subjects enrolled in the Expansion cohort (n=17) with CIN 2 or CIN 3 at baseline. Changes from baseline in lesion size and grading were assessed locally. Grey scaling indicates the CIN grading where 10 subjects showed no CIN or CIN 1 as best response. One subject had a conization performed before the 24 weeks follow up visit (first

- 558 bar).
- 559 CIN, cervical intraepithelial neoplasia.
- 560
- 561

562 Figure 3: VB10.16 induced strong and long-lasting HPV16-specific T cell response after 563 homologous boost vaccination significantly correlated with lesion size regression. Patients' 564 PBMCs were analysed before (V1), during (1 weeks post each vaccination) and 8 weeks after (week 24) vaccination with VB10.16. The number of HPV16 E6- and E7-specific IFN-y 565 secreting cells was determined individually by IFN-y ELISPOT assays after 5-day in vitro 566 567 stimulation with HPV16 E6 or E7 peptide pools. Shown are the spot-forming units (SFU) per 568 10^{6} PBMCs (average of triplicates) after subtracting the background number of spots (37.1±6.8) 569 at pre-vaccination and peak response post-vaccination. Bars represent stacked E6 and E7 570 peptide-specific baseline (grey) and post-vaccination (black) response in the dosing Cohort 1 571 (A), dosing Cohort 2 (B), and Expansion Cohort (C). The kinetic of immune response is 572 illustrated for Cohort 1 and Expansion Cohort (D). Error bars represent SEM. IFNy HPV16-573 specific T cell responses were significantly correlated with lesion size regression (E, F). A 574 comparison between lesion size regression as best response against peak IFN-y response post 575 vaccination of participants in cohort 1, 2 and expansion cohort are visualized by floating bars. A 576 Mann–Whitney test was used to compare groups, indicated by the p-value (p < 0.001). Floating 577 bars show min, median and max values. Open, grey and closed dots represent cohort 1, 2 and 578 expansion cohort. A generalized linear model with gamma distribution and inverse model link 579 function was fitted to the data in figure 3F. An ANOVA analysis was used to generate the p-580 value for SFU (details in supplementary information).

581 The HPV16 type was confirmed for all patients by COBAS HPV Test prior to vaccination.

- 582 PBMC samples at baseline were lost in 2 subjects. SFU, spot forming units; PBMC, peripheral
 583 blood mononuclear cell
- 585 biooa mononuclear
- 584

585 Figure 4: PD-L1 Expression increased in lesions after VB10.16 vaccination. PD-L1

- 586 expression was assessed by immunohistochemistry in cervical biopsies collected at screening,
- and at week 16 and week 24 after first vaccination. PD-L1 is reported at screening and maximum
- 588 response at post vaccination visit in subjects enrolled into the Expansion Cohort.
- 589 *PD-L1*, programmed death ligand 1; pre-vac, before vaccination; post-vac, after vaccination

 \mathbf{A}

B

