

APC-Targeted Vaccines Deliver Antigen Specific Immune Tolerance

ASIT February 2025

Global leader in antigen presenting cell (APC)-targeted immunotherapy technology

NYKODE THERAPEUTICS

Differentiated immunotherapies targeting antigens to Antigen-Presenting Cells (APCs) direct tailor-made immune responses with focus on oncology and autoimmune diseases

Broad clinical pipeline de-risked through strong durability and survival data

- ▶ Lead asset VB10.16 focused on high-unmet need indications, including cervical cancer and head & neck cancer
- Individualized cancer vaccine in 2 basket trials for solid tumors

Strategic multiprogram collaboration in oncology and infectious diseases with Regeneron¹

REGENERON

Autoimmune diseases constitute a potential new therapeutic vertical in high-unmet need indications

Well-capitalized with a cash position of \$115.4m at December 31, 2024

Collaboration and license to 5 programs with Regeneron.

Broad pipeline targeting early to late-stage cancer treatment

^{1.} Wholly-owned by Nykode. Roche supplies atezolizumab; 2. Wholly-owned by Nykode. Merck (MSD) supplies pembrolizumab; 3. Collaboration with Regeneron

The ideal inverse vaccine platform

Antigen-specific down-regulation of immune responses

Affecting all major components of the immune system

Differentiated and versatile MoA allowing adaptation to specific disease

Long-lasting efficacy both in early stage and late stage disease

Bystander suppression capacity

Flexibility to incorporate different antigens coupled with Al solutions for optimal design

Modular design with targeting, antigen and modulatory units able to deliver antigen-specific immune tolerance

Module 1: Multiple targeting units¹ for receptors on tolerizing APCs identified including natural ligands and other targeting molecules

Module 2: Dimerization unit To facilitate strong bivalent interaction

Module 3: Auto-antigens or allergens known to elicit unwanted immune responses identified

Module 4: Cytokines or modulators playing key roles in mediating anti-inflammatory immune responses

- Numerous exploratory vaccines built on above modules and evaluated experimentally
- Several patent applications covering these concepts filed

Induction of antigen specific tolerance can be achieved by targeting disease causing epitopes to tolerogenic APCs

Published data demonstrates differential immune responses by targeting distinct receptors on APCs*

^{*} Braathen R et. al. The Magnitude and IgG Subclass of Antibodies Elicited by Targeted DNA Vaccines Are Influenced by Specificity for APC Surface Molecules. *Immunohorizons*. 2018 Jan 18;2(1):38-53.

Strong in-house AI/ML capabilities applied for optimal vaccine design across therapeutic areas

NeoSELECT

Identification of patient-specific neoepitopes

Advanced Al/ML platform built on the proprietary data

- Validated in two clinical trials
- Successful personalized vaccine design for > 100 patients across multiple indications
- o Vaccine induced neoantigen immune response in 91 % of evaluable patients
- o Integration with multi-biopsy data and liquid biopsies to account for cancer heterogeneity
- o Multiple neoantigen classes including frameshift neoantigens

sharedSELECT

Identification of shared antigens for off-the-shelf vaccines

Maximum coverage proprietary algorithm

- o Applicable to multiple disease areas: Infectious disease, Oncology, Tolerance
- Includes dark antigen discovery
- Successfully designed and validated multiepitopes vaccines

Immune Tolerance

Al guided inverse vaccines design

Building on experience in oncology

- o Al driven structure modelling for platform development and vaccine design
- o In-house multiomics analysis driving design of platform and APC-targeting units to induce tolerance
- MHCII presentation predictions & sequence conservation analysis to apply in tolerance inducing antigen selection
- Uniquely positioned to pivot into personalized tolerance vaccines based on proprietary NeoSelect experience

APC targeting is required for effective disease protection

Experimental autoimmune encephalomyelitis (EAE)

Nykode vaccine delivers Ag-specific suppression of EAE

Nykode vaccine delivers dose-dependent effect on antigenspecific disease-associated cytokine-release

APC targeting is required for effective early therapy of EAE disease

Nykode vaccine deliver early therapeutic disease protection, in contrast to equimolar dose of antigen peptide alone

Targeted vaccine 30 μg dose is equimolar to the MOG(27-63) 3 μg dose

EAE MODEL – EARLY THERAPEUTIC DELIVERY

Nykode vaccine targeting different receptors on APCs is effective as early therapeutic in EAE

EAE MODEL - EARLY THERAPEUTIC DELIVERY

APC targeting is required for potent and prolonged effect of vaccine to second target as early therapy in EAE

Nykode vaccine reduce Ag-specific effector T cell responses and increases frequency of T cells with immune inhibitor

Nykode vaccine potently expands and induces Ag-specific Foxp3+ T cells *in vivo*

ADOPTIVE TRANSFER OF MOG-SPECIFIC CD4+ T CELLS

Early therapeutic treatment with Nykode vaccine alleviates disease progression in relapsing-remitting EAE

Targeted Vaccine 1

RELAPSING-REMITTING EAE MODEL - EARLY THERAPEUTIC DELIVERY

Nykode vaccine significantly ameliorates EAE disease in symptomatic mice

LATER THERAPEUTIC TREATMENT - EAE MODEL

APC targeting can also impact humoral immune responses

- Auto-antibodies
 play an important
 role in immune
 diseases
- Treatment induced reduction of MOGspecific IgG autoantibodies in EAE

Nykode DNA vaccination targeting APCs show durable effect in NOD mice

The ideal inverse vaccine platform

Antigen-specific down-regulation of immune responses

Affecting all major components of the immune system

Differentiated and versatile MoA allowing adaptation to specific disease

Long-lasting efficacy both in early stage and late stage disease

Bystander suppression capacity

Flexibility to incorporate different antigens coupled with A solutions for optimal design

Ag-specific T cell efficacy and effector T cell cytokine downregulation

Downregulate Ag-specific IgG and effector T cells, upregulating regulatory T cells

APC-targeting essential for efficacy and durability. Binds specific receptors on mouse and human APCs (from hPBMCs). Panel of APC-targeting units characterized for differentiated immune-modulating effect

Preventive and therapeutic efficacy in EAE and T1D. Durable efficacy (d30+ in EAE)

Relapsing-remitting (RR) EAE model established. APC-targeted PLP vaccine effective in RR-EAE as early therapy. Ag-specific cytokine downregulation part of vaccine effect

Relapsing-remitting (RR) EAE model established. APC-targeted PLP vaccine effective in RR-EAE as early therapy. Ag-specific cytokine downregulation part of vaccine effect

UNLOCKING THE FUTURE OF MEDICINE